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The introduction of parallel computers has motivated the search for algorithms which run well on
them. In this search many new "multigrid- like" algorithms have been proposed. Being inherently
more parallel than standard multigrid, these algorithms have the potential of being efficient on
massive parallel machines. This paper considers the parallel multigrid algorithm of Frederickson
and McBryan [13]. This algorithm uses multiple coarse grid problems (instead of one) in the hope
of accelerating convergence. In this paper, we analyze the convergence properties of this new
algorithm. This analysis reveals a close relationship with traditional multigrid methods.
Specifically, the parallel coarse grid correction operator is identical to a traditional multigrid
coarse grid correction operator except that the mixing of high and low frequencies caused by
aliasing error is removed. We show how to choose appropriate relaxation operators to take
advantage of this property. Comparisions between the standard muitigrid and the new method are
made.
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1. Introduction. The multigrid algorithm is a fast, efficient method for solving a
wide class of partial differential equations and is now used in many areas of scientific
computing (such as computational fluid dynamics and structural mechanics) (3], [5], [16],
[19]. Despite advances in both numerical algorithms and computer hardware, many appli-
cations require still greater performance than is offered by traditional computers. Given
the success of the serial algorithm, it is natural to consider parallel multigrid algorithms.

Many successful parallel multigrid algorithms based on domain decomposition have
been proposed and/or implemented [1], [2], [4], [7], [6], [9], [10], [14], [18], [20], [21], [23],
[24], [25], [26], [27], [28], [29], [30], [11]. In these algorithms, parallelism is obtained by
subdividing the physical region and assigning the subdivisions to different processors. The
parallel algorithm is then identical to the serial algorithm, with each processor updating
only grid points in its subdomain. Unfortunately when implemented on a massively par-
allel computer, this algorithm results in many inactive processors. Consider for example,
a proble_,m partitioned so that each processor contains only one point on the finest grid.
If an h to 2h coarsening is used on a two dimensional problem, 3/4 of the processors are
idle when processing the next coarsest grid. Even more processors are idle on still coarser
levels. This idle processor problem has spurred research into multigrid-like methods suited
for massively parallel systems. See [8], [12], [13], [15], [17], [22].

In this paper we consider a promising new parallel algorithm which avoids the idle
processor problem, the Frederickson-McBryan parallel multigrid algorithm [13]. This al-
gorithm (to be described in section 2) uses multiple coarse grid corrections to improve the
convergence rate over that of the standard multigrid algorithm. The number of coarse
grid corrections is matched so that the same number of grid points are processed when
computing on a fine or coarse grid. For the one dimension Poisson equation it is a direct
method and is in fact equivalent to odd-even reduction. In this paper we analyze the new
algorithm for 2 model anisotropic problem. This analysis reveals a close relationship with
traditional multigrid methods. Specifically, the parallel coarse grid correction operator is
identical to a traditional multigrid coarse grid correction operator except that the mixing
of high and low frequencies caused by aliasing error is removed. To take advantage of
the aliasing removal, we define a new smoothing number (similar to the Brandt smooth-
ing number) and a corresponding method for determining relaxation operators for the

method. Comparisons between the new method and the standard algorithm are made.
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2. Basic Algorithm. For simplicity, we consider only the situation of one grid point
per processor. The principle idea in the Frederickson-McBryan algorithm is to use other-
wise idle processors to perform additional coarse grid corrections and hopefully improve
convergence. For example, on a one-dimensional problem using a two-level method, two
coarse grid corrections are performed in parallel. Half the processors produce one cor-
rection by projecting the fine grid equations on the odd points and the other processors
produce another correction by projection on the even points. The hope is that by com-
bining these coarse grid corrections the convergence rate can be improved.

Below we summarize a ‘V’ cycle variant of a 2-dimensional algorithm using one post-

relaxation sweep to solve the problem

(1) Aju=b.

proc multi( A;,u,b, level )
{
if (level = CoarsestLevel ) then u = A}d
else
Relax(b, u,level)
ComputeResidual( A4;, u, b, level, res)
ProjResidual(res,Too, ToesTeosTee, level)
multi( Aoo, Toos Yoo, level+1)
multi( Aoe, Toes Uoe, level+1)
multi( Aeo, Teos Ueo, level+1)
multi( Aee, Tee, Uee, level+1)
Interpolate( oo, toe, Ueo, Uee, Jevel, correction)
u = u+correction

endif
}

A; is the current fine grid operator, and A} is the corresponding pseudo-inverse of the
fine grid operator.

Aee is the coarse grid operator defined on the even points of the current fine grid,
3



Ao is the operator defined on the odd points of the current fine grid,

Aoe is the operator defined on the odd points in the x direction and even points in the y
direction, and

Aeo is the operator defined on the even points in the x direction and odd points in the
y direction. It is further assumed that the same projection and interpolation stencils are
used for each correction (distinguishing this algorithm from the highly parallel multigrid
algorithms of Hackbusch [17] and Douglas-Miranker [12]).

The propagation of the error, ex, for a 2 level method can be described by the matrix

T:

(2) exr = Tex_y

where

(3) T=51I-0C),

@) 5=§G) =1+ nG,
=1

and

(5) C = PA} RA,.

S represents the smoothing operator and is a matrix polynomial with coefficients p;.
For our discussion the iteration operator, G is simply A;.
C represents the coarse grid correction operator.
P is the composite prolongation (interpolation) operator (applied at all points).
R is the composite restriction (projection) operator (applied at all points).
Az is the composite coarse grid operator applied at all points (i.e. a combination of

Acey Aoy Aoe, and A, )
A, is the fine grid operator.

The matrices defined above are square ( n? x n? entries for an n x n grid ) as each
operator is applied to every grid point. This is in direct contrast with the standard
algorithm where some operators are applied only to a subset of the points resulting in

rectangular matrices.



The principle difficultly with the above algorithm is to determine smoothing, interpo-
lation and projection operators to produce convergence rates that are significantly better

than the standard multigrid approach. The remainder of the paper will address this topic.

3. Fourier Analysis Framework. The model problem analysis of the parallel al-
gorithm is somewhat easier than that of standard multigrid. This is primarily because
the Fourier transform diagonalizes the iteration operator. We illustrate the approach for

a two dimensional problem defined on the unit square with periodic boundary conditions:

(6) Uzy + ,Buw = f.

The basic analysis for the Poisson equation (f = 1) appears in [13]. Discretization by

central differences for an n X n grid yields the linear system:

(7) Aju = h2f

with A = 1/n. From the previous section, the iteration operator is given by:
(8) ex = p(A1)(I — PAT RA)ex—1.

A simplification occurs if we assume that the matrices P and R are circulant (i.e. the
same stencil is applied at each point in the domain). Since A7 and A4, are also circulaant,
all the matrices in (8) commute. This implies that the individual choices of P and R are
unimportant, only the quantity:

(9) Q=PR.
With this simplification the error is given by:

(10) er = p(A))(I - QAT Ay)er—,

For the remainder of this paper we assume that the restriction operator is simply
point-wise injection (i.e. R = I), and the interpolation operator (hence Q) is given by a

local symmetric 9 point stencil.

qu1 @1 4qu
(11) Q=|a ® «
quu @1 @M

5



We do not consider stencils of greater width, or whether larger stencils yield significantly
better convergence rates.

We transform the operators into Fourier space by considering

(12) u(z,y) = E ﬁk,jez"‘("’“") where p=%.
1<|k.jlgp

In Fourier space all the operators are diagonal with elements:
A =2(1-x)+ 26(1 - z3),
(13) Az = (1-2})+ (1 - 23),

Q = go+2q(z1 + 22) + 4q127172.

where
(14) zy = cos(2rk/n) and z2 = cos(27j/n).

Notice that z; < 0 (z; > 0) corresponds to high (low) frequency in the x direction and
that z < 0 (zz > 0) corresponds to high (low) frequency in the y direction. For now we
take the coefficients p; in the polynomial p(z) and ¢; in @ as unknowns. Using these we
can write down an explicit expression for the error in the parallel algorithm and obtain
an ‘optimal’ method by choosing the free parameters to minimize the error over the entire

range. That is

(15) Jin B T (21, 22)]
where
(16) - P(a1,22) = p(A1)I - Q4T 44,

In [13], Frederickson and McBryan used error expressions derived for their parallel multi-
grid algorithm combined with an optimization routine to deduce optimal parameters.
With these parameters, they illustrate that extremely fast convergence can be obtained.
cally. Before proceeding with the smoothing, we explain why the parallel method yields

faster convergence rates than the serial one.



4. Cancellation of Aliasing with Multiple Coarse Grids. In this section, we
show that it is possible to eliminate most of the aliasing error associated with standard
multigrid methods by using multiple coarse grid corrections. The result is shown for a one
dimensional problem for simplicity. The same arguments extend to higher dimensional

problems.

We first state a lemma which is used in the following theorem.

LEMMA 1.
Ro(av +puv) = o — oy for 1< 7,
- Re(au+fuv) = air+ fiy for 1< 7,
RY(a®y + Bi-1) = a(vy — v_p) + B(v—i — ww) for || < %,
I (ady + Boy) = a(n + v_n) + Bv—i + v) for Il < 7,
where
[ve]; = 2 ik(i/n) k] = 1,...,-;- and j=1,...,n,
(18) []; = etiklilm) k| = 1% and j=1, g
[e]; = e2m@-DG/M k) = 1% and j = 1%

R. and R, denote injection onto the even and odd points respectively, and h = 5 —1 when
[>0and h= =2 +1 whenl<O.

Proor 1. Forl> 0:

R.(av; + Bv,) = aei™illi/n) 4 ﬁe“ﬂ'h(i/ﬂ)

- ab‘+ﬂe4ﬁj(n/2-l)/n

(19)
= af + ﬂ[e-4ﬂ'l(.i/n) ezﬂ'j]
= aty + fvy.
and
Ro(av; + fva) = ae?™l@i-1/n 4 getwih(2i-1)/n
= aiy + fe™n=A)(2-1)/n
(20)

= i + ﬂ[e—2ﬁl(2j-1)/ne(2i—1)""]

= ad — fi
7



We summarize R, and R, by

. VlT
- Re(‘,/‘.,(foo.r)v,,’-’
21 =(V _
_ ‘) oI I o/]V]
VT,
V,T
=M V0l oo VT
vy
where
(23) v eV, v, €Vi, v €V, vop € Vop,
(24) eV, baeVoy, eV, and o€ V..

The properties of RT and RI follow from (21) and (22).

The lemma states how the /** Fourier mode on the fine grid (v;), transforms when it is
projected onto the coarse grid. Specifically, if the /** mode corresponds to a low frequency
(!l € n/4) , then it appears as the {** Fourier mode on the coarse grid. However, if the
mode (vy) corresponds to high frequency (|k| > n/4 ), then it is aliased and appears as
the —I** mode on the coarse grid. The essential point is that the aliasing on even and odd
grid points is of opposite sign.

We illustrate the cancellation of aliasing by defining two coarse grid correction meth-
ods: single coarse grid correction (SC) which solves on the even points, and multiple
coarse grid correction (MC) which solves on both the even and odd points as described in

section 2.
(25) Csc = AT R,
and

(26) Cuc = 5% (PiAT R, + P,AT R;)



where P;, Ry, Pz, R; correspond to interpolation and restriction on the even and odd points
respectively. A, and A4, denote the coarse grid differential operator on the even and odd
points respectively. We assume that the interpolation and restriction operators employ
the same stencil for both coarse grids. Notice that the multiple coarse grid correction
(26) is simply the average of two standard coarse grid corrections on both the even and
odd points. For the theorem that follows, we assume that the operators 4. and A, are
identical except shifted to operate on different points. Additionally, we assume that the
operators treat a positive (! > 0) and negative (I < 0) mode identically. These assumptions
corresponds to the following general representations of the pseudo-inverses for arbitrary

9 and ¥

n n
(27) Afn =Y kit and A¥er =3 kb

i=1 =1
with the same coefficients (k; ;) for both operators. We note that all these assumptions

are not unrealistic and hold for periodic constant coefficient operators.
Without loss of generality, we write the interpolation and restriction operators as:
(28) P, =ZRT, P,=ZRY, R =R.Y and R;=R,)Y

where R, and R, are injection operators on the even and odd points, and Z and Y are
general n X n circulant matrices. A property of circulant matrices is that the v;’s defined

in the lemma are eigenvectors. We denote the corresponding eigenvalues as z and y;.
That is

(29) Zy=zvy and Yy = yvy.

We now state the theorem.
THEEOREM 1. Consider a splitting of the Fourier modes (V) into high and low fre-

quency:

(30) V= [Vi, Vil

where

(31) Vi = spamyqpuicara{v}, and Vi = spann agiijcn/z{ve}-
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Using this Fourier mode splitting, we define a partioning of the operator Csc in Fourier

space:
- R F
(32) Csc =
Fy, F
where
(33) Csc = [Vi, uICsclVi, ilT.
Then, Cuc is given by:
_ Fi 0
(34) Cumc =
0 F
where
(35) Cumc = Vi, hlCumcVi, VilT.
Proor 2.

We look at a matched pair (I,h) from the low and high frequency space:
(36) n eV and v, €V,
Then
Csc(av + fvy) = PLA} Ry(av + Bup)
= ZRT AT R.Y (av; + Bus)
(37) . = ZRI A} R.(ayvi + Bynva)

= ZRT A} (ayi® + Bynb-1)

n
ZRT (ayi® + Bynd_1) D _ k.-

=1

Csc(av + Bva) = Z(ay(w + v-n) + Byn(v-t + ) D ki

=1

n n n
(38) = ay »_ kiyzv + Bya > kigz-tv— + ay 3 kiyz—nv-n+

= i=1 i=1
Bun Y ki 2nvh-
1=1

10



A similar procedure for the odd points yields:

n n n
P AT Ro(av + Bon) = aw Y kayzivr — Byn 3 ki z-1v-1 — ey 3 kigyz—nv—n+
(39) =1 =1 =1

BYn Y Kiytjznn-

=1

Averaging (38) and (39) yields:

n n
(40) Cumc(av + Bvy) = ay O _ kiyzivi + Byn Y ki 2nvs.

i=1 i=1

Notice that the av_; and the Bv_; terms in (38) and (89) cancel when they are av-
eraged. Additionally, the first term in (38) corresponds to Fy, the second term to F3, the
third term to Fy and the fourth term to Fy. It is clear that the multiple grid method yields
the identical ezpression with the terms from F3 and F; removed.

The theorem states that for every multiple grid method of the type described in section
2, there is a closely related single grid method. In particular, the multiple coarsening
correction (MC) is identical to the standard one (SC) except that the mixing of low
and high frequencies (F3 and Fy) is removed. These terms F3 and Fy correspond to an
artificial mixing of high and low frequencies introduced by the method. Typically, these
terms degrade the performance of the multigrid algorithm as the aliased frequencies on
the coarse grid bear no physical relationship with the original frequencies on the fine
grid. While F3 and Fy are error terms, F} is responsible for the fast convergence of
the multigrid algorithm. That is, the coarse grid correction accurately reflects the low
frequency behavior of the fine grid. Since the multiple coarsening method retains the low
frequency behavior of the single grid method without the aliasing error, it seems logical
that the multiple coarsening method will converge faster than the standard method.

5. Interpolation. In this section, we motivate our use of a scaled bilinear interpo-
lation operator for the new method based on the close connection between the new and
standard coarse grid corrections.

The essential idea is to choose an interpolation operator Q that ensures a fast con-
vergence rate for the multiple coarsening algorithm. Notice that the standard multigrid
convergence depends on the low to low frequency operator F} which in turn depends on
the choice of Q. Since the low-to-low frequency operator in the MC method is the same as

11



that in the standard method, it seems intuitive to choose the same interpolation operator
for both methods. Therefore, for the MC algorithm, we are led to the choice of bilinear
interpolation which has been shown to be a good interpolation operator in standard multi-

grid algorithms for the solution of second order equations. This leads to the following for
Q:

25 5 .25
(41) Q= i. 5 10 5
25 5 .25

Note that the scaling factor 1/4 is needed because we are averaging 4 interpolants from
multiple coarse grids. This is in fact the same operator that is used in [13] for the
Poisson equation and is proved to be the ‘best’ using Fourier Analysis arguments. For the
remainder of this paper we assume that the interpolation operator is given by (41). Of
course, the possibility exists that it may be better to use interpolation with wider stencils

in the new parallel method but we shall not explore that here.

8. Smoothing Criteria/Richardson Relaxation. As we shall see, the typical
relaxation criteria for standard multigrid methods is not entirely appropriate for the
Frederickson-McBryan method. In this section we develop a new criteria for the parallel
method by making use of the close relationship between the standard and new methods.
We begin by studying Richardson relaxation as a smoothing operator within multigrid
methods.

A general Richardson relaxation method can be described by a matrix polynomial.
For example, the Richardson method for the model problem in section 3 can be written
as:

(42) S=P(4)= 1+i1p.'A§.

Given such a scheme, the key question is how to determine the p;’s so that the multigrid
method converges rapidly. Probably, the most popular criteria for these parameters is
that they minimize the Brandt smoothing number [3]. For our model problem, the Brandt
number is defined as follows:

(43) pp = max|5(z1,22)| for 21 <0 or 2,50,

12



where S in Fourier space is:
n

(44) 5(zy,22) =1+ gp.-[fil(zl,zg)]"
and 7,7, and A; are defined in section 3. The Brandt number measures the least
that any high frequency error is damped after the relaxation is applied. The intuition is
that the coarse grid correction effectively solves in the low frequency range. Thus, the
smoothing operator must only damp the error in the high frequency range. Smoothing
parameters deduced by minimizing the Brandt smoothing number are usually easy to
compute for model problems and work well in multigrid algorithms. In fact, for many
problems (including our model problem) the convergence rate for a standard two-level
multigrid method (for example using point-wise injection and bilinear interpolation) is
approximately equal to the Brandt smoothing number and is close to optimal over all
possible p;’s. .

ExXAMPLE 1. Consider the model problem

(45) Uzr + fuyy = f

with periodic boundary conditions defined on the unit square. The Brandt number for this
problem can be written as:
n
(46) yb=ma.x|.§(.§1)|= |1+Zp,'.41| for 2< A, <4446
=1
where the Brandt number ranges given in (43) have been transformed into functions of A,.
The minimization of (46) over all p;’s is given by a Tchebycheff polynomial. For n =1,

the optimum is:

N 4
with
-1 2841

It is natural to ask how well this choice of p; performs for a multiple correction
method. Specifically, consider a two-level single correction method using one iteration of

this smoothing criteria, point-wise injection, and bilinear interpolation. We can compare
13



3. -».8 4. .3 1.
F1G. 1. Dark region indicates areas where weight function, N, is equal to 1 in Fourier space. Note: high
frequency in both directions corresponds to lower left corner of diagram.

this with a multiple correction method, whose coarse grid correction is simple the average
of four single corrections. We omit the detailed results and simply state that there is
almost no improvement using the parallel method over the serial method when the Brandt
smoothing number criteria is used (i.e. the convergence rates are identical). This is
because the Brandt smoothing number criteria equi-distributes the errors in F3, F3, Fj.
Now that F; and Fy are zero, we should chose the relaxation operator to minimize the
effect of F; only.

To deduce a new smoothing criteria, we examine the motivation behind the Brandt
aumber. Specifically, we view the Brandt criteria as a simplification of the general op-
timization problem. That is, we wish to minimize the spectral radius of the multigrid

iteration operator. The optimal parameters, p;’s, are given by
(49) min p(T) = min p(p(4:1)(I - C)).

One can view the coarse grid correction, I — C, as a somewhat complex weight function
applied to p(A4;). We therefore, replace it by a simplier weight function, N. In Fourier
space this operator is defined as follows:
N 1 ileso or 22_<_0
(50) N(zy,22) =
0 ifz;>0 and 72> 0
14



F1G. 2. Damping of Fourier components with the multiple coarse grid correction. High frequency in both
directions corresponds to leftmost corner in the diagram where the damping is equal to 1.

and is depicted in figure 1. The optimization problem with N replacing C is equivalent
to minimizing the Brandt smoothing number. The definition of N is motivated by the
behavior of smoothing operators as well as the behavior of coarse grid corrections. Specif-
ically, the coarse grid correction provides no improvement over the high frequencies and
so this error must be entirely damped by the smoothing operator. Second, almost all
damping of low frequencies is effectively handled by the coarse grid correction.

Unfortunately for the multiple grid method, the Brandt smoothing number is not
entirely appropriate. However, we can define a new smoothing number by simply choosing
a new weight function based on the behavior of the multiple grid correction. Intuitively,
the removal of the ahasmg error should significantly improve the coarse grid correction
over the high and middle frequencies because they contribute more to aliasing error than
the low frequencies. Smoothing is still needed to compensate for the fact that the coarse
grid operators do not accurately reflect the fine grid operator over the high frequencies.
However, the removal of the aliasing error implies that the smoother should focus on
damping the highest frequency modes (which are most poorly represented on the coarse
grid). Specifically for our model Poisson problem, the damping of the Fourier modes with
the coarse grid correction (depicted in figure 2) is given by:

Y=z + (1 z2)
A-z)+(1-123)

(51) MI - C(z1,22)) = 1 - %(1 +21)(1+ 22

15



~1. -8.3 .. “.3 3.

Fi1G. 3. Dark region indicates areas where weight function, N, is equal to 1 in Fourier space. High frequency

in both directions corresponds to lower left corner of diagram.

where A() denotes the damping of a Fourier mode due to the coarse grid correction.

Further, we observe that

(52) AMI-C(z1,22))=1 when zy=-1 or z;=-1
and
(53) AT - C(z1,22)) <1 for z1 > =1 and 23> —1.

That is, the coarse grid correction even damps most of the high frequency errors. This
is a consequence of the absence of aliasing error (which degrades the performance of the
coarse grid correction). However, since the coarse grid correction does not damp the
highest frequency modes (z; = —1 or z; = —1), all damping of these components must
come from the smoothing operator. Based on these observation, we define a new weight
function corresponding to figure 3 given by:

1 iifzy=-1or z=-1

(54) N(z1,22) = |
0 if:tl#l and 22#-1

and a corresponding parallel smoothing number:

(55) pp = max S(z1,22) zTy=-1or zp=-1

16



Assuming that the coarse grid correction damps low frequencies sufficiently, we expect
that the multigrid convergence rate will be close to the smoothing rate. We emphasize
that this new smoothing number is a heuristic based on numerical experimentation.

We demonstrate the use of this new smoothing number with a few examples.

EXAMPLE 2. n = 1 (damped Jacobi smoothing).

We determine the extremal values of A; over the intervals given by z, = —1 and
z; = —1. For our model problem, the parallel smoothing number is then given by:
(56) pp= max [14+pd
4<A1 <4448

which ts minimized by the Tchebycheff polynomial

(57) T(4;) = k{4, — (4+ 28)]
with

-1 _ B
(58) P1=k=wa and by =575

EXAMPLE 3. n = 2 (two step smoothing).

The parallel smoothing number is given by

(59) pp= max |1+pd +p4]l.
4<A,<4+48

which is minimized by the Tchebycheff polynomial:

(60) k[A2 — (8 + 4B) 4, + 28 + 160 + 16).
Therefore
L 1 -8+ -4
(61) m=k= o Tesrie P " 25+ 1654 16’
and
__ 7
(62) Hp = B +ef+8

Tables 1 and 2 illustrates the results for the Frederickson-McBryan method using the
smoothers corresponding to these examples. Specifically, the tables compare the two-

level parallel multigrid convergence rate using this smoothing with one obtained using a
17



B m #p( MC) p( MC) || optimum p( MC )
1. -.16667 .3333 3333 3333
2, -.125 .5 N || 498
3. -1 .6 .6 .598
4. -.08333 .6667 667 .664
TABLE 1

Comparison of convergence rate of parallel method which minimizes parallel smoothing number vs. the

optimized parallel method (n = 1) on a 64 x 64 grid.

21 P2 pp( MC) p( MC)
-.352941 .0294118 .058824  .103

B optimum p( MC )
1

2. -.285714 .0178571 .142857 .143

3

4

.0938
142
217
283

-.243902 .0121951 .219512 220

. -.214286 .0089286 .285714 286
"TABLE 2

Comparison of convergence rate of parallel method which minimizes parallel smoothing number vs. the

optimized parallel method (n = 2) on a 64 x 64 grid.

numeric optimization routine which chooses the relaxation parameters, p;, to minimize
the overall convergence rate of the two level multigrid process.

Not only does the new smoothing number produce near optimal relaxation param-
eters for the model problem, but it also predicts the convergence rate (similar to the
Brandt number for the standard multigrid method). With the exception of § = 1, the
convergence rates and the smoothing number are nearly identical. When 8 = 1 however,
the assumption that the coarse grid correction sufficiently damps the low frequencies is
not valid. That is, the smoothing damps the high frequencies better than the coarse grid
correction is removing the low frequency components. Nonetheless, the convergence rates
obtained are not significantly worse than the optimal. It should be noted that this same
phenomena occurs with the Brandt smoothing number. That is, the Brandt number does
not accurately reflect the convergence rate when the smoothing number is very small.
Typically when this happens, it implies that more smoothing was done than was neces-
sary. In other words, the relaxation operator is smoothing the high frequencies better

than the coarse grid correction is removing low frequency errors.

18



n=1 n=2 n=3
8 | (SC) s(MC)] p(SC) (MC)[p(SC) o(MC)
1. .6 333 220 103 0739 074
2. 714 N1 342 143 .148 068
3. 778 6 434 220 215 0740
4. 818 .667 503 286 275 A11
5. .846 714 558 342 327 148
6. .867 75 601 392 373 182
7. 882 778 637 434 413 215
8. .895 8 .667 471 448 246
9. 905 818 .693 503 480 275
10. | .913 833 715 532 508 302
TABLE 3

Comparison of convergence rates for serial (with optimum Brandt smoothing number) and parallel multigrid

(with optimum parallel smoothing number) for a 64 x 64 grid.

7. Comparisons with Standard Multigrid. In this section we compare the new
algorithm with the standard multigrid algorithm on our 2-dimensional model problem for
a 64 X 64 grid. The standard multigrid method employs a point-wise injection, bilinear
interpolation, and a smoothing algorithm which minimizes the Brandt smoothing number.
The parallel algorithm uses the same grid transfer operators and minimizes the parallel
smoothing number.

Table 3 shows the convergence rates using a 1, 2 and 3 step relaxation algorithm.
From the table, we notice that the multiple grid method always yields better convergence
rates than the single grid method. Finally in table 4, we compare the serial and the
parallel methods using smoothing schemes which result in a convergence rate of one half
for the serial method. This is accomplished by &ming both the smoothing operator and
the number of smoothing iterations, and varying # to obtain a convergence rate of one
half. One iteration of the smoothing operator corresponds to the polynomial which mini-
mizes the Brandt smoothing number for the standard method and minimizing the parallel
smoothing number for the parallel method. The degree of the minimizing polynomial is

given by the column ‘degree’ and the number of iterations of the smoothing iteration is
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degree sweeps B p(SC) | p( MC)
1. 2. 1.914121 5 239161
1 3. 3.34732 5 .245292
1 . 4. 4,78521 R 247372
2. 1. 3.94949 .5 .28261
2 2. 9.63334 D 272215
3 1. 9.71329 5 294394
TABLE 4

Comparison of convergence rate of parallel method vs. standard method using different smoothing schemes
which correspond to a serial convergence rate of one half.

given by ‘sweeps.’ From the table, we can conclude that when the standard method yields
a convergence rate of one half, the corresponding parallel method yields a convergence
rate close to one quarter for this problem. Obviously, additional tests must be performed
to fully assess the potential of this parallel method.

8. Conclusions. We have analyzed the Frederickson and McBryan parallel multigrid
algorithm and have shown that it can produce convergence rates that are significantly
better than the standard multigrid method. We have shown that the reason for this success
is that the mixing of high and low frequencies due to aliasing error is removed. In order
to take advantage of this, however, the relaxation operator must be appropriately chosen.
To this end, we defined a new smoothing number which reflects the behavior of the new
multiple grid correction. In general, the relaxation parameters chosen by this smoothing
criteria are nearly optimal for our model problem, and result in substantial computational
savings over the standard method. More tests with variable coefficient problems as well
as more severely anisotropic problems using more sophisticated relaxation operators are

planned.
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